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§ 2.3 Linear Equations 
 
We continue our “quest” for solutions of first-order differential equations by examining a particularly 
“friendly” family of differential equations – linear differential equations. 
 
Definition 2.3.1: Linear Equation 
 
A first-order differential equation of the form 

 
  
a1 x( ) dy

dx
+ a0 x( ) y = g x( )   

is said to be a linear equation in the variable y. 
 
 
Standard Form: Divide both sides of the above equation by the coefficient   a1 x( )  to get the linear 
equation in standard form: 

 

dy
dx

+ P x( ) y = f x( )  

   
Integrating Factors: To solve a linear DE we will use the fact that the left side can be transformed 
into the derivative of a product if we multiply the equation by a magical function  µ x( )…  
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Solving a Linear First-Order Equation 
 

1. Put the equation in standard form: 
 

dy
dx

+ P x( ) y = f x( )  

2. Identify  P x( )  and find the integrating factor  µ x( ) = e
P x( )dx∫ . No constant of integration is needed 

when evaluating 
 

P x( )dx∫ , i.e. let c = 0. 

3. Multiply both sides of the equation by  µ x( ) . 

4. Verify the left side is the derivative of the product of  µ x( ) = e
P x( )dx∫  and y and write it as such: 

  

  

d
dx

e
P x( )dx∫ y⎡

⎣⎢
⎤
⎦⎥

d
dx

µ x( )y( )
  

= e
P x( )dx∫ f x( )   

5. Integrate both sides of the equation and solve for y. 
 
Example: Solve   ′y − 2y = 4− x . Give the largest interval I  over which the general solution is defined.  
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Notes on Existence and Uniqueness: 
 
1. Suppose the functions P and f are continuous on I. We have shown that 

 
y = e

− P x( )dx∫ e
P x( )dx∫ f x( )dx∫ + ce

− P x( )dx∫  is a one-parameter family of solutions of  

 

dy
dx

+ P x( ) y = f x( )  and every solution of 
 

dy
dx

+ P x( ) y = f x( )  defined on I is a member of this 

family. We say 
 
y = e

− P x( )dx∫ e
P x( )dx∫ f x( )dx∫ + ce

− P x( )dx∫  is the general solution of the DE on the 
interval I. 

 

2. If we rewrite 
 

dy
dx

+ P x( ) y = f x( )  in the normal form   ′y = F x, y( ) , we have 

  F x, y( ) = −P x( ) y + f x( )  and 
 

δ F
δ y

= −P x( ) . Since P and f are continuous on I, then F and 
 

δ F
δ y

 

are also continuous on I. We can conclude from Theorem 1.2.1 that the IVP  
 

 

dy
dx

+ P x( ) y = f x( ) ;    y x0( ) = y0   

  
will have one unique solution, we just need to find the value of c in the general solution satisfying 
the initial condition. 

 
Example: Solve the IVP. Give the largest interval I  over which the solution is defined. 
 

  
cos x( ) dy

dx
+ sin x( ) y = 2cos3 xsin x −1: 

  
y π

4
⎛
⎝⎜

⎞
⎠⎟
= 3 2  
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Example: Find the general solution of 
  
dP
dt

+ 2tP = P + 4t − 2 . Give the largest interval I over which the 

general solution is defined. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solutions for c = −1, 1, 2, 3 are shown here.  
Note that as  t →∞ ,  P→  ______ because 

  cet−t2

→______. We call this term   cet−t2

  

a transient term. Not all solutions have them,  

but they are worth noting in applications, as  
their contribution to the solution go to zero  

as the independent variable gets very large. 
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Example: Solve the IVP 
 

dy
dx

+ y = f x( ) ,   y 0( ) = 1 , where 
  
f x( ) = 1 0 ≤ x ≤1

−1 x >1
⎧
⎨
⎪

⎩⎪
    

Note: We want the solution to be continuous. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Graph of  f x( ) :  Graph of solution: 
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Example: Solve the IVP   t ′y + 2y = 4t2 ,   y 1( ) = 2    
 


