Quiz 3
Math 2C – Differential Equations
Due Date: Wednesday 19 April

Show all work for full credit. Do work on separate sheets of paper.

- 1. Solve using variation of parameters. $y'' + 9y = \csc(3x)$
- 2. A mass weighing 3 lb stretches a spring 3 in. There is no damping and no external forces acting on the system. At t = 0 the mass is released 1 inch above the equilibrium position with a downward velocity of 2 ft/sec. Determine the equation of motion.
- 3. Don correctly solved a spring/mass system and found the equation of motion to be $x(t) = 3\cos(\sqrt{2}t) 4\sin(\sqrt{2}t)$. Use his solution to answer parts a) d). You may round any numbers to three decimal places if necessary.
 - a) Was the mass initially released from above or below equilibrium? Justify briefly.
 - b) Convert Don's solution into the form $x(t) = A\sin(\omega t + \phi)$.
 - c) What is the greatest displacement of the mass from equilibrium?
 - d) At what times is the mass at its greatest displacement below equilibrium?
 - e) At what times is the mass passing through equilibrium on the way up.
- 4. A mass weighing 8 lb stretches a spring 1.5 in. The mass is also attached to a damper with coefficient β . Determine the value of β for which the system is critically damped.