CHAPTER 2
First-Order Differential Equations

§ 2.1 Solution Curves Without a Solution

Introduction: The goal of this chapter is to present methods for solving various kinds of DE’s. However, before taking up this task, we spend this section investigating a remarkable fact: It is possible to visualize and draw approximate graphs of the solutions of a DE without ever solving the equation. The tool that makes this visualization possible and allows us to explore the geometry of a DE is called the direction field (or slope field).

Direction Fields

Consider the first-order ODE \(\frac{dy}{dx} = f(x, y) \):

If we can find a solution curve \(y = \phi(x) \) that satisfies the ODE, what does \(f(x, y) \) tell us about the graph of the solution curve at \((x, y)\)?

If a solution curve of this equation is displayed in the \(xy\)-plane, then the DE simply says that at each point \((x, y)\) of the solution curve, the slope of the curve is \(f(x, y) \). A direction field for the ODE can be constructed by evaluating \(f \) at each point of a rectangular grid of points in the \(xy\)-plane. At each point of the grid, a short line segment is drawn whose slope is the value of \(f \) at that point. Thus each line segment is tangent to the graph of the solution curve passing through that point. A direction field is a picture that shows the slope of the solution curve at selected points of the \(xy\)-plane.

Example: Below is the slope field for the DE \(\frac{dy}{dx} = ye^{-x} \). Sketch an approximate solution curve passing through each of the given points.

a) \(y(2) = 1 \) b) \(y(-1) = 2 \) c) \(y(0) = -1 \) d) \(y\left(\frac{1}{2}\right) = 2 \)
Example: Consider the IVP: \(\frac{dy}{dx} = y(y-2), \ y(0) = 1 \)

a) The general solution is \(y = \frac{2}{1-ce^{2x}} \). Do you see a singular solution?

b) Find a solution of the IVP.

c) Sketch the solution curve \(\phi \) to the IVP and the singular solution.

Note: The DE in the previous example is of the form \(\frac{dy}{dx} = f(y) \), making it an **autonomous** first-order DE. The zeros of the function \(f \) are called **equilibrium points** (or **critical points**). If \(c \) is a critical point, then \(y(x) = c \) is a constant (equilibrium) solution of the autonomous DE.
Example: A direction field is given for each differential equation. Based on the direction field, determine the behavior of \(y \) as \(t \to \infty \). If this behavior depends on the initial value of \(y \) at \(t = 0 \), describe the dependency.

a) \(\frac{dy}{dt} = 3 - 2y \)

b) \(\frac{dy}{dt} = (y + 1)(y - 2) \)